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Propagating and localized vibrational modes in Ni-Zr glasses 

J Hafner and M KrajCf 
Institut fiir Theoretische Physik, TU Wm. Wiedner Hauptstrab 8-10, A-1040 Wien, Austria 

Received 17 February 1994, in final f a m  13 April 1994 

Abstpct. Numerical investigations of the vibrational eigenmodes of amorphous NixZrloo-x 
alloys are presented. Structural models are prepared by molecular dynamics simulations of the 
quenching processes, based on interatomic forces derived using a tight-binding-bond approach. 
The vibrational propetties are investigated via a direct diagonalization of the dynamical matrix for 
N = 72940111 models, and via recucsioll calculations of the vibrational spectral functions, pattial 
and total dynamical structure factm and vibrational densities of states for large N = 291640111 
models. The static structure of the NixZrlwx glarses is characterized by a pronounced chemical 
and topological short-range order (SRO). we investigate in detail the manifestation of the SRO in 
the partial dynamic spec& functions aod struclw factors S l J ( k ,  U). We discuss the possibility 
of measuring partial dynamic stnrturt fsctors using inelastic neutron scattering and demon- 
that our results are in good agreement with the existing experimental data on the total dynamical 
structure factors. We show that, although most eigenmodes are extended, localized modes can 
be found at the upper and lower edges of the frequency spectrum. Of particular interest is 
the prediction of low-energy locabxi  modes, which have a profound influence on the low- 
temperature thermodynamic propeatieS. 

1. Introduction 

In recent years considerable progress has been made in our understanding of elementary 
excitations in disordered mdterials [1,2]. A complete description of structural modes is 
required as a basis for an Understanding of certain physical phenomena that are thought to 
be characteristic of the glassy state: the glass transition [3] (which is essentially dynamical 
in origin), the electrical resistivity [4,5], the Eliashberg function [6] of amorphous metals 
etc. In any case, a detailed knowledge of the spectrum of vibrational excitations and of 
the dynamical structure factors is necessary. Of particular importance is the determination 
of dispersion laws. It has been shown that simple glasses (like metallic glasses [7-101 or 
Lennard-Jones glasses [ 11,121) support propagating collective excitations up to rather high 
wavenumbers. The dispersion relation of these modes (for which we shall use the term 
‘phonon’, although of course it is strictly applicable only to crystalline systems) is linear in 
the long-wavelength regime, with a slope corresponding to the velocity of sound. At larger 
wavenumbers the dispersion relation bends over and goes through a maximum and then 
through a minimum at values of lkl close to Qp/2 and Qp (the position of the first peak in 
the static structure factor S(k)). A similar form of the dispersion law is observed in He-II 
and also in some simple liquids [ 131 (notably liquid metals [ 141). It has been shown [ 151 
that the origin of the dispersion minimum is best described in terms of a diffuse-Umklapp 
scattering process, the sharp first peak at k = Qp in the static structure factor of the glass 
playing the role of a reciprocal lattice. vector and Qp/2 the role of a pseudo-Brillouin-zone 
boundary. This theme has been elaborated in a number of simple models [16,17]. 
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The ‘phonon-like’ excitations determine the properties of glasses at temperatures above 
10 K. At temperatures below 1 K, the properties of glasses differ strongly from those of the 
crystalline phase of the same material. These differences can be described satisfactorily by 
the well known tunnelling model [ 18-20]. In the range 1-10 K the anomalous behaviour of 
the glassy materials may be explained only by assuming the existence of additional modes 
coexisting with the sound waves 120,211. Them is experimental evidence E221 that at least 
some of these additional modes are localized low-frequency harmonic vibrations. A number 
of attempts have been made to elucidate the srructural origin of these localized soft modes 
and their possible correlation with the tunnelling states [23-251. 

”b date, most studies (experimental, computational or theoretical) have been performed 
on simple model systems whose structure may be described, at least within a certain 
approximation, in terms of the dense random packing of soft spheres (inverse power 
potentials [Z], Lennard-Jones systems [ l l .  12,233; this also includes binary metallic 
glasses [7-101 such as MgmZnw or C a a g N  which show only weak chemical or 
topological short-range order). In reality, glasses conforming with this simplifying picture 
are the exception rather than the rule. Many of the most stable metallic glasses formed in 
binary transition-metal systems (e.g. Ni-Zr, Ni-Y, Fe-Y and so on) or in transition-metal- 
metalloid systems (e.g. Fe-B, Ni-P and so on) show strong chemical and topological 
short-range order (SRO). The description of the SRO requires the determination of the three 
partial static structure factors Sij(k). Experimentally, this may be achieved using various 
difiaction techniques (neutron dif€raction on isotopically substituted samples producing 
the most reliable results [26]). Computer experiments are successful if they are based 
on sufficiently realistic interatomic force fields [27,28]. Both laboratory and computer 
experiments point to a pronounced similarity of the SRO in the glassy and crystalline states. 
The open question is whether this similarity is also reflected in the dynamical properties. 

This is precisely the problem we address in this paper. We present a detailed numerical 
investigation of the dynamical properties of Ni,Zrl~, glasses. Model structures are 
prepared by a simulated molecular-dynamics quench based on interatomic forces derived by 
a hybridized nearly-free-electron tight-binding-bond approach [27], leading to partial static 
structure factors in good agreement with neutron-diffraction data [29-311. The vibrational 
density of states and Bloch spectral functions for propagating collective excitations are 
calculated using a recursion technique [9.10,32,33]. The partial spectral functions may 
be used to derive the partial dynamical structure factors SI,@, U )  and the inelastic neutron 
scattering law S(k,  w). Localization of vibrational excitations is characterized by the inverse 
participation ratio calculated in terms of the eigenvectors of the dynamical excitations, 
obtained by direct diagonalization of the dynamical matrix. Our results show that certain 
featutes in the partial static structure factors SI,&) characterizing the SRO (prepeaks, 
shoulders in the bigher-order peaks) also appear in the partial dynamical structure factors 
S,,(k, U),  at least for not-too-high frequencies. The ‘dynamical’ prepeaks show dispersion 
and merge at intermediate frequencies with the sound-wave peaks. At these frequencies 
the peaks in the dynamical structure factors become very broad, indicating that propagating 
modes are strongly overdamped in this frequency regime. At still higher frequencies sharp 
structures in the SI J (k, w )  reappear. At the highest vibrational frequencies, the sound-wave 
peak and the main structural peak merge at a k - &/2. Again, the pronounced differences 
in the p h a l  dynamical structure factors reflect the SRO in the glass. We also calculate 
the inelastic neutron-scattering law and demonstrate that at the level of composite (neutron- 
weighted) dynamical structure factors there is a good agreement with the few available 
experimental data [34]. We also discuss the possibility for an experimental determination 
of partial dynamic structure factors using isotope-substitution techniques. 
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Our calculations show that, although most eigenmodes are extended, the modes at the 
upper edge of the spectrum and some low-energy modes are localized, i.e. the atomic 
displacements are largest for a small number of isolated atoms. The high-frequency modes 
are associated with locally constrained configurations whose existence is the inevitable 
consequence of the rapid quenching process. More interesting is the small number of low- 
frequency localized modes that are found in all models, irrespective of composition. The 
localized low-frequency properties dominate the low-temperature anomalies of the glasses. 
The possible origin of the modes and the relation with the soft-potential model 124,251 is 
discussed. 

2. Generation and cbarrr~terizati~~ of the shctund modet 

2.1. interatomic force ficld 
The basic assumption of the hybridized nearly-fiee-eloctron tight-binding-bond ap- 
proach [U] is that the total energy may be divided into contributions from the strongly 
bonded d electrons and the much more mobile s electrons. The s-electron contribution 
to total energy and interatomic forces is calculated using standard pseudopotential theory 
[35,36]. The d-electron contribution may be written within local-density theory in terms of 
a repulsive pairwise interaction containing the electrostatic, exchange-correlation and non- 
orthogonality contributions to the total energy and a covalent bond-energy Eabopld resulting 
from the formation of the d band [37]. s-d hybridization is c o n s i d d  in a lowest-order 
approximation by fixing the correct numbers of s and d electrons. Assuming the d orbitals 
in amorphous or liquid metals to be degenerate and neglecting the directionality of the d 
bands, &bond can be written in a twa-centre orthogonal tight-binding approximtbn as [38] 

(1) 
1 

~ d b ~ d  = - C t i j (Rij)ei j  
2N '.I 

Ik 

where t i j  is the transfer integral for d orbitals centred at the sites i aml j (di- Rij) 
and Oij is the bond order counting the difference in the number of electrons in the bonding 
and antibonding states formed by the orbitals at sites i and j .  Equation (1) describes 
only formally a pair interaction. In general, the dependence of the bonding forces on the 
atomic environment of the bond enters via the band order. For disorderad materials the 
problem is that the atomic structure is not known o priori, but has to be calculated on the 
basis of the interatomic forces. Hence the forces must be calculated on an appropriately 
chosen reftnnce structure. Far amorphous metals it has been shown that a B&e lattice 
(where the local atomic environment is characterized by a mean coordination number and 
an average bond length) is a sufficiently d i s t i c  reference system and allows in addition 
for an analytic calculation of the bond order. For monatomic materials, the bonding fonxs 
are proportional to the inverse square root of the effective coordination number, hence the 
approach is similar in spirit to the FinnisSinclair potentials 1391 (but requires no adjustable 
parameters). In binary systems the character of the bonding forces is determined by [27,28] 
(i) the difference Aed in the position of the atomic d lewis (adjusted such as to emwe 
local charge neutrality) in relation to the average d-band width wd ond (ii) the filling of 
the d band. If Aed is comparable to or only slightly smaller than 'ci;id: (for example, in 
Cu-Y, Ni-Y, Ni-Zt), the alloy is close to the split-band limit with the lower part of the 
band dominated by the 'late' transition metal (Cu, Mi, . . .) and the upper part dominated 
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by the early transition metal (Y, Zr, . . .). In this case the bond-order for unlikeatom pairs 
is largest, and the pair forces show a strong preference for heterocoordination. In addition 
the minimum in the unlike-atom potential occurs at shorter distances, resulting in very 
short A-B bonds. The preference for strong and short heteroatomic bonds is largest if the 
Fermi level falls into the pseudogap sepatating the two parts of the d band. Conversely, if 
Aed << Wd. the d electrons form a common band with little structure and the pair forces 
are essentially additive or show a weak tendency to segregation (due to size effects). For 
details, we refer the reader to [U]. 

2.2. Simulated molecular dynamics quench 

The structure of the amorphous alloys has been generated by a simulated molecular dynamics 
quench. The starting configuration consists of a face-centred cubic lattice with a random 
distribution of the two atomic species. In the first step, the system is molten at a temperature 
several hundred degrees above the liquidus line. After reaching equilibrium, the liquid alloy 
is compressed isothermally to the density of the glassy phase, followed by an isochoric 
quench to room temperature at a rate of T 2: 1014 ICs-'. Data for the calculation 
of the static structure factors are sampled over long runs of several thousand timesteps 
(technical details of the molecular dynamics routines are given in [40,41]). To prepare 
the equilibrium configuration for the recursion calculation of the dynamical properties, the 
system is further quenched to nearly OK and a foace-free! configuration is determined by a 
conjugate-gradient minimization of the total energy. The simulations were performed for 
large ensembles of N = 2916 atoms (serving as the basis for the recursion calculations) and 
for smaller ensembles of N = 729 atoms (they ~IE the starting configurations for the exact 
diagonalization of the dynamical matrix). Ni,Zrloo_x alloys with compositions x = 25,35, 
50 and 65 and number densities of n = 0.0491 A-3, n = 0.0527A-3, n = O . O W A - ~  and 
n = 0.0655 A-3 (taken from experiment [2%31,34]) have been considered in this study. 

2.3. Glass structure 

The static structure of amorphous Ni-Zr alloys has been described in detail in [27] (based on 
MD quenches for N = 1372-atom ensembles). Here we recapitulate only the main results. 

(i) The non-additivity of the pair potentials leads to a strong CSRO at all compositions. In 
the partial static structure factors S l ~ ( k ) .  the chemical ordering is reflected by a pronounced 
prepeak in the like-atom structure factors &I(&). For the minority species the CSRO prepeak 
has an even larger amplitude than the main structural peak arising from density fluctuations. 
For comparison, the partial static structure factors are. included in the graphs representing 
the partial dynamic structure factors (see figure 3(a)-(c)). 

(ii) The very short bond length for unlikeatom bonds, together with the rather large size 
ratio (Ra/RNi = 1.323 in terms of the atomic radii of the pure metals) leads to a strong 
topological short-range order (TSRO) as well. The TSRO is similar in the crystalline and 
amorphous phases: in the Zr-rich alloys (x  2 50) the local order is of a trigond-prismatic 
type, the dominant local motif is a distorted trigonal prism of six Zr atoms centred by an Ni 
atom. The crystalline Ni-Zr compounds with the CuAlz and BCr structures [42] are built 
of these units in comer-, edge- and face-sharing arrangements. Evidence for their existence 
in the amorphous alloys comes from the coincidence of the crystalline interatomic distances 
with the peaks in the pair-correlation functions, and from the analysis of the bond-angle 
distribution functions (especially the bond angles formed by Ni-Ni-Ni triplets give a clear 
signal) [27]. With increasing Ni content the character of the TSRO gradually change to a 
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tetrahedrally close-packed type. Tetrahedral close packing is also realized in the Ni-rich 
intermetallic compounds (e.g. Ni2Zr with the structure of the cubic Laves phase CuzMg, and 
Ni5Zr with a BeAu structure [42]). In the static structure factors the change in the TSRO is 
reflected mainly in the Bhatia-Thornton densityaensity structure factor S”(k). The first 
peak in S”(k) is rather broad and asymmetric for Zr-rich compounds. It changes to the 
more symmetrical form characteristic of random close-packing for the Ni-rich alloys [27]. 

The conclusion as to the similarity of the local order in the crystalline and amorphous 
phases is also corroborated by investigations of the electronic structure [4346], which 
demonstrate a pronounced similarity of the electronic density of states of the crystalline and 
amorphous phases. 

3. Calculation of the vibrational spectrum 

3.1. Direct diagonalization 

The normal modes of vibration of a solid material (crystal, quasicrystal or glass) are given 
in the harmonic approximation in terms of the eigenvalues wv and eigenvectors u,( i )  of 
the real- space dynamical matrix ( i ,  j label atomic sites; a, p Cartesian coordinates) €471 

(2) D,p(ij) = mi --WQ (; ;) q l J 2  

with the force constants Q (h i )  being detemnkd by the first and second derivatives of 
the interatomic pair potentials. The vibrational spectrum (or ‘phonon’ density of states) 
g(0) may be calculated in terms of the statistics of the eigenvalues 0:; a Bloch spectral 
function fe (k ,  CO) for propagating collective excitations with wavevector k and polarization 
e is given by the projection of the atomic displacements (described by the eigenvectors 
u,(i)) onto a plane wave eeik*& (k vectors are restricted to values compatible with the 
periodic boundary conditions of the model) 

2 0  

K v i , j  
f e (k ,  U )  = -- 7 xe u,(i)e-’k’Re u,(j)eik‘RJ8(02 - 0:). (3) 

Localization of vibrational eigenmodes is characterized by the participation ratio [48] pv  

Pv  = (xj t u v ( j ) 1 2 ) ( N x j  mi mj tu,(i)i4 > .  -’ (4) 

For extended modes in crystals one has p - 0.6; for a mode localized on a single atom, 

Calculation of the vibrational eigenmodes by direct diagonalization is limited by 
computer capacity. For larger systems, 
approximate techniques for the calculation of the vibrational spectrum must be developed. 

Pv - 1 / N .  

In practice, the limit is N - lo00 atoms. 
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3.2. Recursion calculation 

Experimentally, the information on the vibrational eigenmodes is contained in the double- 
differential scattering cross section for neutrons per solid angle and energy [493. The 
coherent cross section is proportional to the dynamical structure factor S(k, 0): 

J H&er and M KrajcY 

(5) 

where k = kin - kout is the wavevector diffmnce between the incoming and scattered 
neutrons and b is the scattering length of the atomic nucleus; S(k, o) may be expressed in 
terms of the vibrational Green function Ga,p ( i j ,  U )  defined as the resolvent operator [47] 

d2a -- - (b,"lS(k,u) 
dS2 dw kin 

Gap ( i j ,  0') = [u2&j&p - Dap(ij)]-' . (6) 

In a one-phonon approximation one has 

S(k, o) = -Ul[n(o) + l]e-2w(k) c e-'k'(Ri-5) - lim c ka Im Gab[ij, (o + iS)21kp 
a.b 6 - 4  U 

(7) 

where W ( k )  is the Debye-Waller factor aad n(o) the Bose-Einstein occupation function. 
It follows immediately that the Bloch spectral function (3) is a diagonal matrix element of 
the Green function between plane waves [9,10,47]: 

ap 1, (U + id)2]epeik'@ (8) 
20 
w 6 - d  

f e  (k, U )  = - - lim 7 x eae-i'.& I ~ G  [i * 

iJ a.@ 

and that the dynamical structure factor S(k, U )  is given in a one-phonon approximation in 
terms of the spectral function for longitudinal polarization (ellk) as 

S(k .0 )  = - h n(U) + ' e-ZW(k)(e. k)2fe(k, 0). (9) 

Diagonal matrix elements of the Green function (6) may be calculated using the real- 
space recursion technique [32,33], i.e. by transforming the dynamical matrix to a basis 
(constructed via an iterative procedure) where it acquires a tridiagonal form. The diagonal 
matrix elements are then calculated in terms of a continued-fraction expansion. For the 
calculation of a Bloch spectral function, the starting state for the construction of the 
recursive basis is just a plane wave [IO]. The vibrational density of states may be 
calculated by integrating the spectral functions over a large volume in k space or by 
calculating the imaginary part of the Green function for an initial state with random atomic 
displacements [lo]. The integration in k space corresponds closely to the experimental 
determination of g(w) for polycrystalline or glassy materials [50], but the random-vector 
approach is computationally more convenient. In practice, up to 60 recursion steps are 
calculated exactly, corresponding to as many exact eigenvalues. A continuous spectrum is 
obtained by terminating the continued fraction using the method proposed by Lucchini and 
Nex [51]. For details of the technique see [10,33]. 

For simplicity, (349)  have been formulated for a monatomic material. For a binary 
system, partial vibrational spectral functions f,"(k,o) ( I ,  J = A,B), may be defined 

m w  
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by restricting the atomic displacements to the sites occupied by one atomic species. 
Partial dynamical structure factors SI&, w )  are obtained by multiplying the fi’((L, w )  
for longitudinal polarization with the thermal occupation and Debye-Waller factors: 

n(w) + 1 e-wl(k) e-WAk) 
SI&, w )  = h U m‘i2 my (e - k)2 &“((IC, U). (10) -- 

I 

The total dynamical structure factor is given in terms of a weighted average over the partials 

(11) 

with (b)  = cAbA + cBbB. Alternatively, the partial dynamical structure factors relating 
to fluctuations in the number density S”(k.0). the concentration Scc(k,w) and their 
cross-correlations S N C ( ~ ,  o) may be used [lo]. In practice the ‘diagonal’ spectral functions 
f t A ,  f f B ,  f,“” are calculated using the recursion method, the off-diagonal terms are given 
by linear combinations of the diagonal terms. The partial Debye-Waller factors W/(k) may 
be calculated in terms of the partial vibrational densities of states g&), and this completes 
the information necessary for the determination of S I J ( ~ ,  0). 

The recursion approach to the dynamical properties is closely related to the equation- 
of-motion (EOM) method [52]. The EOM method in turn may be considered as the harmonic 
approximation to a full MD calculation. The main advantage of the recursion technique is 
that it works directly in the wavenumbedenergy representation and avoids the cumbersome 
double Fourier transform from the timedependent correlation functions to the dynamic 
structure factors. Moreover, the method is computationally much more convenient: the 
computational effort for one recursion step is equal to that for one MD step but only < 100 
recursion steps are necessary to achieve a resolution in w that can be achieved only via 
EOM or MD runs with a minimum of - 104 MD steps (but separate recursion calculations 
are necessary for every k vector). 

(b)2S(k,  0) = [CAb:S,u(k, 0) + CBbiSBB(k, 0) -t 2 G b A b B S m ( k ,  011 

4. Phonons in amorphous Ni-Zr alloys 

4.1. Partial vibrational spectral functions 

Figure 1 shows the partial dynamical spectral functions for amorphous Ni65Zr35 and 
Ni25Zr75 alloys for longitudinal excitations propagating along an arbitrary direction in 
k space, calculated for values of lkl compatible with the periodic boundary conditions. 
For both alloys we find the familiar result of sharply defined peaks in f:’(lc,w) in the 
long-wavelength regime, broadening very rapidly with increasing wavevector (for large 
(k, If,’(k, w )  approaches its incoherent limit, i.e. f,’(k, w )  + g (o) and f,”(k, U )  + 0 
for Z # J ) .  

For the Zr-rich alloys, the dynamics of the Ni ions has very much the character of 
localized dispersionless impurity vibrations. Ni ions are only very weakly coupled to the 
propagating low-frequency modes. The Zr spectral function shows the form familiar from 
the simple-metal glasses with a rather well defined dispersion relation (defined in terms of 
the maxima of the spectral functions) passing through a maximum at the pseudo-Brillouin- 
zone boundary and a minimum near the peak in the partial static structure factor. The SRO 
seems to be of little consequence for the dynamical properties. 

This is different for the Ni-rich alloy. Here both Ni and Zr atoms participate in the 
long-wavelength ‘acoustic’ modes, but the form of the partial spectral functions is more 
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FisUrr 1. Partial vibrational spechal functions fLJ(k, U )  (in arbitrary units) for pnyagam ' g  
longitudinal modes (e II k) in amolphous Niz-5 (a) and Ni&~5 (b) alloys. Wavenumbem 
are given in units of (27r/a) where a is the length of the cubic 2916-atom cell (a = 39.01 A for 
NizZP15. U = 35.44A for NiasSs). The graphs are truncated at a maximum intensity of 100 
(in arbitrary units). 
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complex: in both f"-" and fn'-n a broad high-frequency peak appears in the q + 0 
limit, accompanied by a corresponding minimum in f"-%. This is the manifestation of 
'optic' long-wavelength vibrations with unlike atoms moving out of phase. For larger I C ,  
the frequency of the 'optic' modes decreases to a minimum at wavevectors corresponding 
to the position of the prepeak in the partial static structure factor. At these wavenumbers 
the spectral functions show a high-frequency 'acoustic' and a low-frequency 'optic' peak 
(we should remember that these qualifications are strictly legitimate only for crystals; for 
an attempt to better characterize optic and acoustic modes by diagonalizing the matrix of 
the second moments of the f I J ,  see [lo]). At still higher wavenumbers it is impossible to 
distinguish optic and acoustic modes. 

" 0 0  
0 0  

e 

2 if" - 
50 

0 

Ln 
4 - 
C 

20 
tY : - - - C ~o~ 30 2 ' 0  . - % a  M % f l  W O  P 

0 0  

f?" 

5 0  
0 

20 Figure 2. partial vibratioaal spectral 
functions f f N ( k ,  0). f p ( k ,  o) and 

~0~ 30 2 ' 0  + N o % *  W O  ations nal f,NE(k, density in o) amorphous for and propagating cowengation Nkj555. Iongitudi- fluctu- See 
W O  P 

%W i n  (meV1 also figure 1 and text. 0 0  

There is a certain correlation between the optic vibrations and non-diffusive dynamical 
concentration fluctuations. This is illustrated in figure 2 in the example of the Bhatia- 
Thornton spectral functions f ", f" and f NC for a-Ni&35. The spectral functions 
for dynamical density fluctuations show a series of peaks defining dispersion relations for 
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propagating density modes. The spectral functions for dynamical concentration fluctuations, 
on the other hand, are rather diffuse; a dispersion relation can be followed only to rather 
low wavenumbers. 

Structural correlations in the dynamics are more distinctly expressed in the partial 
dynamical structure factors. 

4.2. Partial dynamical structure factors 

The partial dynamical structure factors SI J Q ,  o) for three amorphous Ni,Zrlar, alloys with 
x = 25.50.65 are shown in figure 3. The S , J ( ~ ,  o) are calculated from the vibrational 
spectral functions according to (lo), the data are normalized such that limk+oo S[J(k ,  o) = 
S I J  and lim-0 SIJ (k, o) = SIJ  (k). The static structure factors from the MD simulation are 
shown for comparison. Note that the recursion calculation of the spectral functions proceeds 
in the constant4 mode and that an appropriate terminator has to be chosen for every k. 
This leads to a certain noise after conversion to a constant-o representation. Moreover, 
lim-0 SI J (k, o) leads to partial static structure factors for a single metastable equilibrium 
configuration in the T + 0 K limit, whereas S, ~ ( k )  from the MD simulation represent an 
ensemble average over a large number of T = 300 K configurations. 

At low frequencies, S I J ( ~ ,  U) is very close to the corresponding static structure factor 
(note in particular the existence of strong CSRO prepeaks, especially in the Ni-Ni structure 
factors) and shows in addition a sharp sound-wave peak at small k. With increasing 
frequency the sound-mode peak is shifted to larger k, whereas the main structural peak and 
the CSRO prepeak shift to smaller k and are strongly damped at intermediate frequency. 
The CSRO peak crosses the sound-wave peak at Aw 2 15meV, and becomes a broad 
long-wavelength 'optic' peak at higher frequency. At even higher frequencies the main 
structural mode increases again in amplitude and merges with the sound-wave peak. At 
the same time, well defined higher-order peaks develop in all three S , ~ ( k , o ) .  The first 
peak in the high-frequency dynamic shucture factor occurs close to Qp/2, indicating that 
in the high-frequency modes, next-nearest neighbours move in phase, as for zone-boundary 
acoustic modes in crystals. The existence of higher-order peaks shows that the structural 
correlations are well defined in the low-frequency limit and also (more surprisingly) in the 
high-frequency limit, whereas they are overdamped at intermediate frequencies. However, 
the structural features characteristic for CSRO are missing in the high-frequency limit. 

It is also interesting to have a brief look at the dynamical Bhatia-Thomton structure 
factors. S"(k, w )  and S&, o ) / C N j C z r  for Ni&m are shown in figure 4. The variation 
of S"(k. o) with frequency follows the pattern established for monatomic glasses [ 11,121: 
with increasing frequency the main structural peak is first progressively broadened and split 
into two subpeaks. At still higher frequency, the amplitude of these peaks grows again; 
the positions shift in such a way that for the highest frequencies S"(k. o) is just exactly 
out of phase with the static S"(k). The sound-wave peak and the main structural peak 
merge at high o. In the dynamical concentration-fluctuation structure factor Scc(k, o) there 
is no sound-wave peak (apart from spurious resonance effects). Again, the main peak in 
Scc(k, o) (whose amplitude in the static limit scales with the degree of CSRO) is damped and 
split into two subpeaks with increasing frequency. Scc(k, o) is almost flat at A o  - 15 meV. 
At even higher frequencies the amplitude grows again. The low-k peak represents the 
high-frequency long-wavelength dynamical concentration fluctuations ('optic' modes). The 
high-k part merges close to Qp (for S"(k)!) with a peak issuing from the second peak 
in Scc(k). This peak represents dynamical concentration fluctuations with a wavelength 
comparable to the mean interatomic distance d - %IQp. 

J Hajker and M KrajZf 
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(a) NtaZIii 

Ni-Zr 

(c) NtlaZrrr 

0 IO 20 30 40 50 0 I Q  ZO 1 40 50 0 IO 20 30 40 50 

I L I  inolutlof(q) ILi h..10o1(?) l i l  r n n i U o f ( ~ )  

Figure 3. M a l  dynamical structm factors S I J ( ~ ,  o) for amorphous Ni,Zrioo-x alloys ( (a) 
x = 25, (b) x = 50, (c) x = 65). S f l ( k .  U) has been normalized such that Sir& o) + 811 for 
k + 00. The partial static structure factors from the MD simulation are shown for comparison. 
Wavenumbers are given in units of (2n/a) where a is the length of thk 2916-atom cell (see 
figure 1). 
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Figure 4. Partial dynamical B b t i a - m t a  ~truct~re factors S N N ( ~ ,  O) and S&, O)/(cNicZr) 
for amorphous NimZrB. See figun 3. 

The existence of such well defined high-freauency concentration and density modes 
is certainly quite surprising. The possibility of an experimental observation of the 
concentration modes will depend crucially on the neutron-scattering lengths weighting the 
contributions from the individual S , J ( ~ ,  0). 

Similar calculations may be performed for transverse modes. As has been shown for 
simple metal glasses, the vibrational spectrai functions for transverse modes are well defined 
only within a rather narrow k-range and converge rapidly to the incoherent limit beyond. 

4.3. Dispersion of phonons in glasses 

In crystals, the dispersion relations for phonons are determined by the IC-dependence of the 
eigenvalues of the dynamical matrix, or otherwise, in terms of the positions of the poles 
in the vibrational spectral functions. This definition may be extended to glasses where the 
8-function peaks of the spectral functions a~ replaced by broad maxima: figure 5 shows 
a dispersion relation for phonons in amorphous N i a B .  ‘Acoustic phonons’ are defined 
in terms of the maxima in S”(k, w). The dispersion of acoustic phonons shows the now 
well established ‘diffuse-Umklapp’ minimum near Qp. The dispersion of optic phonons 
is defined in terms of the maxima in Scc(k, 0). It has a maximum at k = 0 and may be 
followed into a minimum near k - Qp/2. 

In experiments, dispersion relations are usually derived from the maxima in S(k,  U).  

Because of the finite width of the spectral functions, multiplication with (n(w) + I)/w cx w2 
for low w shifts the position of the maximum to lower frequencies. However, this shift is 
the consequence of the thermal occupation factor and does not represent a change in the 
frequencies of the eigenmodes. 
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(4 (b) 
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Flgure 7. Neutron-weighted composite spectral function F ( k , o )  (a) and dynamic sbucture 
factor S ( k ,  o) (b) for amorphous Nu&. See figure 6. 

lengths (bi: = 1.44, b z  = 0.28, bi: = 0.76, G: = -0.87, bgt = 1.03). This ensures a good 
contrast between experiments performed with isotopically pure Ni62 or Nia (figures 8(b) 
and (c)). Still, due to the strong reduction of the intensities at high frequencies, it is doubtful 
whether the very high accuracy necessary to resolve the partials SI J (k, w)  can be achieved, 
at least at high U. A direct determination of &(k, w )  or Scc(k, w )  is possible if zero 
alloys with either &j = 0 or (b) = 0 are prepared. However, figures 8(d) and 9(b), 
(c) demonstrate that due to the combined effects of the Bose occupation factor and of the 
damping of the SI ~ ( k .  w )  at intermediate frequencies it will be extremely difficult to explore 
the structure in the partial dynamical structure factors beyond fiw 2 15 meV. One also has to 
remember that the resolution of the low-w maxima will be difficult for most spectrometers 
because of the overlap of the inelastic S(k, U )  with the foot of the quasielastic peak. 

4.5. Phonon density of states 

The total and partial phonon densities of states (DOS) for a series of amorphous NixZrloo,x 
alloys, calculated by taking the average over a series of recursion calculations with random 
initial states (see section 3.2) are given in figure 10. The results for a-Ni25Zr75 are in good 
agreement with neutron-scattering data on a-NiaZr76 [34,54] and very similar to the phonon 
DOS measured for a -CuZrg  [55] and a-FexZrloo-x (x  = 33,40,80) [56] alloys. Note that 
the experiment produces rather a generalized DOS with the partials weighted according to 
the neutron scattering lengths. For a-Ni&r~6 the normalized weighting factors are 0.508 
for Ni and 0.492 for Zr. Therefore the calculated DOS may be compared directly with 
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Figure 9. Neutron-scattering law S ( k . 0 )  for 
amorphous N i 6 5 5 5  alloys with different isotopic 
compositions: (a) natural isotopic composition. (b) 
Ni-zero alloy with G = 0, (c) zero alloy with 

I I  

, 

t i l  innnitlor($) (b) = -& + C N i h i  = 0. See  also fi- 2 and 8. 

the experimental data, showing reasonable agreement between theory and experiment. The 
DOS shows only little variation with composition, apart from a concentration of the Ni 
contributions at high frequencies at low Ni content. 

The most remarkable result is the deviation of the low-frequency part of the DOS from 
the o2 behaviour characteristic for crystalline materials. In the range 2 < ho < 10meV 
(6meV for a-Ni&75), the DOS varies almost linearly with frequency, i.e. g(w) a o. 
Experimentally [53,55] g(o) a 04/3 has been claimed for 4 < ho < 8meV. The different 
power law reflects the presence of extra low-energy modes in the glass compared to a 
crystalline sample of the same composition. At least some of these low-energy modes.are 
not simple propagating Debye phonons (see below). It has also been shown that the number 
of low-energy modes depends on the preparation of the sample; it is reduced by structural 
annealing processes [54]. 

The non-Debye behaviour appears very clearly in a plot of g(w)/02 (see the chain curves 
in figure 10). In this representation the Debye (sound-wave) contribution is a constant. The 
existence of excess low-energy modes gives rise to a peak in g(o)/02 at 2-3 meV, which is 
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Figure 10. Total and partial phonon den- 
sities of states for amo~~hous Ni,Zrlw-, 
alloys. Full curve: total DOS; broken 
curve: partial zt DOS; dotted curve: par- 
tial Ni DOS. The full dots show the mea- 
sured generalized DOS for NiN zr76 (af- 
ter [54]). All distributions are normal- 
ized to unity. The. chain curves show 
g(o)/d, with horizontal lines merking 40 

hw ( m e V 1  the Debye limits (see text). 

0 10 20 30 

often referred to as the ‘bosonic’ peak. This nomenclature seems to imply that the origin of 
the excess modes is in quantum effects. However, the 2meV peak is primarily a structural 
effect. This follows very clearly by comparing figure 10 with the dynamical structure factors 
S(k, U )  shown in figures 6(b) and 7(b). The strongest contribution to the low-energy peak 
in g(o)/02 comes from k - Qp, i.e. from the dispersion minimum due to diffuse Umklapp 
scattering processes. ‘Diffuse Umklapp scattering’ means that at these wavevectors the 
atoms move cooperatively, with a wavelength of the vibrations comparable to the mean 
interatomic distance. The in-phase movement of the atoms is superposed by small local 
relaxations. In a crystal such collective movements are possible (at zero energy) if the 
wavevector coincides with a reciprocal lattice vector and no local relaxations are required. 
In a glass collective vibrations at low energy are possible over a range of wavelengths, 
due to the finite width of the peak in the static structure factor. This means that a much 
larger volume is available in phase space for these low-energy modes in glasses than in 
crystals. Most of the excess modes are short-wavelength propagating modes (although they 
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At temperatures between 100 and U)K, the effective Debye temperature drops to 
0 - 190-210K (the higher values corresponding to the lower Ni content), to be compared 
with experimental values [57] of Q = 235 K for a-NiwZru. The decrease of 8 reflects the 
presence of excess low-energy excitations in the vibrational spectrum. The position of the 
‘bosonic’ peak corresponds to a temperatwe of about 20-25 K, characteristic for the range 
where a maximum in C,/T3 and a plateau in the thermal conductivity are observed in many 
metallic glasses [19-211. Below this energy, g(o)/w2 decreases again and this corresponds 
to an increase in the effective Debye temperatwe. However, as for our finite models the 
actual number of modes at these energies is already very small, quantitatively meaningful 
calculations will require models based on a larger number of atoms. 
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Figure 12. Participation ratio p ( o )  
of vibrational eigenmodes in amorphous 
N i , Z r l ~ x  alloys. The vertical arrows 

cut-offs for propagating long-wavelength 
4 0 marked T and L show the l ~ ~ - f r e q u e n ~ y  0 1 0  20 30 

hw ( m e V )  transverse and longitudinal modes. 

4.6. Phonon localization 

The participation ratio p(w) for vibrational eigenmodes in amorphous NiXZrtwx alloys, 
calculated by direct diagonalization of the dynamical matrix for N = 729-atom ensembles, 
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is shown in figure 12. Three different regimes may be distinguished. (i) For frequencies in 
the range 10 Q Aw < 25meV the participation ratio of all modes is close to p(o) - 0.5, 
i.e. of the same order as for vibrational eigenstates in crystals. Hence all these modes 
are extended. (ii) For high frequencies (ho  > 25meV) the participation ratio decreases, 
reaching very small values of 0.01 < p(w) Q 0.03 for hw > 34meV. In these high- 
frequency localized modes the amplitude of the atomic vibrations is large only on a very 
small number of isolated sites, and even these motions are in general uncorrelated. A typical 
high-frequency localized mode is shown in figure 13(a). The atomic sites with the large 
atomic displacements are characterized by high atomic level stresses [58,59], in particular by 
high hydrostatic atomic level pressures. Modes with 25 Q Ao < 30 meV are in the transition 
regime with increasing localization. (iii) At low frequencies (ho Q IOmeV) p(m) scatfers 
between p - 0.6 and p - 0.06, indicating the coexistence of extended and localized modes. 
Considering somewhat arbitrarily modes with p < 0.2 as localized (corresponding to an 
effective mass of the localized mode of about 20 atomic masses for our model) we find a 
concentration of about 10-~  to 10 -~  localized modes in the regime tio < IOmeV, similar to 
experiments on many glasses [ 19,201. The eigenvectors of a typical low-energy localized 
mode are shown in figure 13(b). A characteristic difference between high- and low-energy 
localized modes is that while the high-energy modes are usually localized on only one or 
two atomic sites (corresponding to participation ratios of p(o) - 0.01), the low-energy 
modes involve a group of atoms (about 10-20) with correlated atomic motions (and hence 
the participation ratio is larger by typically a factor of ten). Localized single-particle modes 
would be possible only at a large local concentration of free volume, which is, however, 
unstable in the densely packed metallic glasses. 

Our result that, although there exists a large number of localized high-frequency modes, 
only very few localized low-frequency modes can be found, illustrates a characteristic 
difference between electron and phonon localization in disordered solids. The major point 
is that the characteristic wavelength of low-frequency vibrations is large and therefore 
scattering from structural imperfections is weak [60]. This is also the reason why it is 
difficult to assign the origin of the soft localized modes to a particular type of geometrical 
defect. A negative hydrostatic atomic level pressure shifts the centre of gravity of the local 
vibrational DOS to low frequencies [59], but this is not a sufficient condition for the existence 
of a low-frequency localized mode. Some attempts to characterize the geometrical origin 
of these modes and their relation to the soft-potential model and low-temperature relaxation 
processes have been made by Schober and Laird [Z, 611. Their results stress the similarity 
between the atomic motions in the soft localized modes and in jump relaxation processes 
that occur well below the glass-transition temperature. Our study confirms for the first time 
the existence of localized low-energy modes in realistic models of metallic glasses, but a 
detailed investigation of the atomic motions in these modes must be left to future work. 

W e  also have to emphasize that the finite size of our models limits to a certain extent the 
investigation of low-energy modes. With the diameter of our 729-atom models, the periodic 
boundary conditions limitthe wavevector k toki 2 2n/a - 0.16-0.17A, i = x ,  y, z. Given 
the minimum wavevector and the longitudinal and transverse velocities of sound (cf. the 
dispersion relations shown in figure 3, we find cut-off frequencies of tiet N 4meV for 
longitudinal and A+' N 2meV for transverse long-wavelength modes. These cut-offs 
are indicated in figure 12. Most localized modes are below these cutoffs. To extend the 
numerical investigations to larger systems (with lower cut-off frequencies allowing for a 
coupling of localized and long-wavelength propagating modes) will require the adoption of 
techniques for the iterative diagonalization of very large matrices. 
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5. Conclusion 

We have presented the first investigation of partial dynamic structure factors in metallic 
glasses with pronounced chemical and topological short-range order. We have shown that 
the features characterizing the CSRO in the static partial structure factors (prepeaks etc) 
persist in the dynamic partial structure factors in the low- and high-frequency regimes, 
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whereas in the intermediate-frequency regime the strong interaction between the vibratimd 
modes leads to a smearing of all structurally induced characteristics. In particular, the peaks 
in the structure factor S&, w )  for dynamical concentration fluctuations define a dispersion 
relation for ‘optic’ modes with a maximum at R = 0 and a minimum near the peak in 
S&). k - 0.6&,, i.e. just out of phase with the dispersion relation for ‘amustic’ modes 
defined in terms of dynamic density fluctuations. 

We have also presented the first investigation of phonon localization in realistic models 
of metallic glasses. The most important result is the existence of low-frequency 1- 
modes. Although these modes represent only a small fraction of the total onal 
spectrum, they make an important contribution in the low-frequency limit (litr) Q 3meV) 
and are hence of decisive importance for the low-temperature thermodynamic properties. 
Our results support the soft-potential model for the explanation of the low-temperature 
thermodynamic anomalies of metallic glasses. A structural characterization of the origin of 
these modes however must be left to future work. 
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